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STATUS OF WING FLUTTER*

By E. G. Kﬁssner
SUMMARY

Thils report presents a survey of previous theoretical
and experimental investigations on wing flutter covering
thirteen cases of flutter observed on airplanes. The di-
rect cause of flutter is, in the majority of cases, at-
tributable to (mass-) unbalanced ailerons.

Under the conservative assumption that the flutter
with the phase angle most favorable for excitation occurs
only in two degrees of freedom, the lowest critical speed
can be estimated from the data obtained on the oscillation
bench. Corrective measures for increasing the critical
speed and for definite avoidance of wing flutter, are dis-
cussed.,

I. INTRODUCTIONW

The forced oscillations on airplane wings are oscil~
lations created solely by the air stream and have as a
rule nothing to do with the vibrations set up by the in-
ertia forces of the engine. They are therefore best des~
ignated by the term "flutter" since they revert to the
same underlyiang causes as the fluttering of a flag,

Flutter starts at the so-called "critical speed,"
which depends chiefly on the oscillation frequency and on
the wing chord. The lower the frequency and the smaller
the chord, the lower the critical speed will be. The os~-
cillation frequency of a wing, in turn, depends on the
stiffness and on the mass of the wing.

Flutter in an air stream is possible only when a
plate - in whole or in part - is free to rotate about at

*"Augenblicklicher Entwiclklungsstand der Frage des Fl&gel—

flatterns." Luftfahrtforschung, October 3, 1935, Pp.
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least two axes or, which is the same, has at least two de-
grees of freedom of oscillation.

A wind vane of sheet metal made to rotate about one
axis only does not flutter. However, when the flagpole is
not rigid but free to swing laterally, thereby pivoting the
vane about an axis below it and parallel to the wind, flut-
ter is possible., If the vane is of cloth rather than metal,
it can turn adbout infinitely many axes and is therefore
particularly susceptible to flutter. So also is a wind
vane made of two pieces of sheet metal hinged together, be-
cause then the flagpole and the hinge line between the two
pieces form the two axes of rotation.

A similar condition exists when mounting a rudder R
with tab H to a practically rigid fin F (fig. 1). The
two axes of rotation are A; and Az, With such an ar-
rangement flutter has actually been observed (reference 1).

Far more importance, from the practical point of view,
attaches to the case of an airplane wing fitted with an
aileron. When oscillating, the wing. turns about some nodal
axils which may, for instance, coincide with the wing center
line or the axis of the strut connections. Besides, the
aileron itself can turn adbout its hinge.

The first records of wing flutter go back to the ear-
ly days of flying, when the lateral control obtained by
twisting the wing tips, was abandoned in favor of the aile-
ron~control method _ '

During the World War several cases 6ccurred where
flutter caused the ailerons to break and tear off. Like-~
wise, almost all cases observed later on disclosed upon
investigation, that the ailerons were the cause of the ac-
cident. Even a rigid plate can flutter, as stated above,
when free to rotate about two axes. If the wing tip bends
and twists simultaneously, it can flutter even without ai-
lerons, although this case is much less frequent than the
one described first,

In the following, the results of past investigations
on wing flutter are given without regorting to mathematical
deductions, while one section contains a discussion of the
theoretical relations.
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II. DEVELOPMENT OF METHODS OF ANALYSIS

The exploration of the causes of wing flutter is
marked by the diversity of methods employed with a view to
obtaining technically useful solutions of this extremely
complicated problem,

1, Theorem of Linear Differential Equations
for Steady Aerodynamic Forces

In the first flutter investigations, the air loads on
the oscillating wing were assumed to be steady and depend-
ent on the dynamic angle of attack, the dynamic angle of
attack being defined as the angle between the wing chord
and the momentary direction of motion of the oscillating
wing. Some authors also took into account the 1ift due to
dynamic profile camber. A wing oscillating about some ax~
is, while its wing chord describes a curved surface line
in flight, is identical with a wing in steady flight whose
profile curvature changes at measured intervals.

This substitution is, in fact, strictly correct.
Even these elementary assumptions afford a physical expla=-
nation of the phenomenon of flutter through a sysiem of
linear differential equations, the number of which depends
on the number of degrees of freedom, Flutter is possible
whenever undamped ogscillations of constant amplitude, i.e.,
harmonic oscillations, are possidble, Routh's discriminant
thereby served as a criterion from which the critical speed
may be computed.

The first calculations of thisg kind were made by
Blasius in June 1918, at the request of the Inspection
Section of the German Air Corps (reference 2), incident to
the investlgation of the flutter on the lower wing of the
Albatros D3 biplane which, having only one spar, was of
low torsional stiffness. There were no ailerons on the
"lower wing. The accidental circumstance which prompted
the investigation of that particular case at all, was due
to the fact that at that time the significance of the ai-
leron as promoter of flutter, was not sufficiently appre-
ciated. Similar investigations were subsegquently made by
Ve Baumhauer and XKoning, Bairstow, Frazer and Duncan,
Blenk and Liebers, Hesselbach, and were cxtended to include
oscillating ailerons (references 3 to 14).
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Indeed, the calculation of the simple elastic-mass os-
cillations of an airplane wing on the oscillating bench,
stipulated a nundber of simplifying assumptions. Other sim-
plifying assumptions consisted in disregarding the energy-
consuming, unsteady system of vortices and the premises of
material damping proportional to the rate of deformation,
The accuracy of sucn calceunlations therefore is, as a rule,
quite small., Humerlical agreement between calculation and
experiment has been obtained only in cases where the as-
sumptions could be made to fit the particular case.

Agreement was more readily obtainable on cantilever
than on braced wings. At first it was believed that can-
tilever monoplanes were particularly susceptible to flutter,
but subsequent experience proved otherwise.

Cne important result was the following rule: The mass
axis of the wing shall lie ahead of the clasbhic axis if
feasible; the ailleron c.g. shall lie in its hinge axis in
order to avoild flutter.

2. Calculation of Vortex Separation

Whereas in the early stages of development, wing flut-
ter was treated as s mechanical probdlem, the aerodynanical
side now received more attention and it was attempted to
trace the source of the unsteady lift of the oscillating
wing and the correlated separation of vortices, at least
for the case of two-dimensional flow,

The problem of the oscillating wing was first attacked
by Birnbaum (references 15 and 16)., Fe introduced the im-
portant concept of the reduced frequency , which is m
times the ratio of wing chord to wave leangths. If n 1is
the oscillation frequency (in minutes), ¢, the wing chord
(in meters), and v, the flying speed (in kilometers per
hour), the reduced frequency is:

W= 0,06 T %—t— (1)

The air loads on the oscillating wing are functions of this
nondimensional parameter. PFollowing the example of Prandtl,
Biranbaum replaced the wing by a system of bound vortices
and postulated that the sum of bound and free vortices must
remain constant with time; he obtained an equation which he
could solve for small values of the reduced frequency

W= 0,12, 3Eeyond this point his development was not con-
vergent,
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This solution, however, was unsuitable for the eluci-
dation of the problem under consideration, because wing
f}utter always occurs at-materially higher values of w.
Kussner found the general solution of Birnbaum's equation
and extended it to include the case of the co-~oscillating
aileron (refercnce 17). Since the creation of harmonic
oscillations is always considered as the oscillation ecri-
terion, it seccmed natural to write the equations from the
very first for harmoniec oscillations, which offers the
added advantage of utiligzing the labor-saving method of
complex presentation. The oscillation criterion then is
tlie disappearance of the complex denominator determinant,
which yields two equations for calculating the oscillation
frequeney and the critical speed. Thig obviates the use
of the linear differential equation and Routh's dise¢rimi~
nant. One particular advantage accruing from the use of
the harmonic oscillation is that the material damping can
be introduced in a simple and physically correct manner as
phase difference of the elastic force. This possibility
does not exist with the linear differential equation, where
it is even necessary to make a physically incorrect assump-
tion of the damping in order to obtain a linear equation,

On this basls it was then possible to calculate sever-
al examples of an oscillating flat plate in order to elu-
cidate systematically the influence of mass distridbution,
“elastic forces, and material damping. It was found that
with two degrees of freedom - bending and torsion - the
critical speed depends chiefly on: ’ ’

l. The torsional oscillation frequency of the.wihg.
2. The backward position of the c.g. of the wing.
3« The maferial damping.,

The result of material damping is that flutter is
possible only up to certain maximum ®, In oscillations
at higher w, the energy obtainable from the air stream
would become inadequate for compensating the damping losses.
This rule holds not only for the two degrees of freedom un-
der discussion. - bending and torsion - dbut is of general
validity, as will be shown later.

Theoretically the effect of material damping is so
much greater, a2s the ratio of bending stiffness to tor-
sional stiffness 1s higher, which is approximately equiv-
alent to the ratio of wing chord to length ef overhang.
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As the total damping is not accurately determinable, no
fairly close agreement can be expected between calcula-
tion and observation except for cantilever wings of high
aspect ratio.

Similar investigations have been made in England.
Glauert calculated the unsteady air loads on an oscillat-
ing wing for the two degrees of freedom - bending and tor-
sion (reference 18), He proceeded from H. Wagner's con-
cept of the area of discontinuity; but as his numerical
calculations extend only to ® = 0.5, they are insuffi-
cient for the mathematical treatment of flutter, with 1its
much higher ® values. )

Duncan and Collar extended the calculation to a wing
oscillating with increasing amplitude (reference 19).
Lately, Theodorsen has calculated the air forces on an Os-
cillating airfoil (reference 19a).

3. lodel Experiments

llodel experiments are another means of investigating
wing flutter, but if such model tegts are to afford prac-
tical conclusions the models must be constructed dynamic-
ally similar. Dynanmic sinilarity is the more difficult to
attain as the model scale, i.e., the model, is smaller.
Since the model scale depends moreover on the jet diameter
of the available wind tunnel, the dynamic similarity was
disregarded at first and the simply constructed model
wings were mounted in the air stream to a wall represent-
ing the plane of symmetry of the wing (references 9, 22,
and 23), Such models were guf ficient for exploring the
effect of ce.g. position, damping, and mass unbalance of
the sileron. But the values of the reduced frcquency ob-
tained in these tests arc considerably less than the eX-
perinental values cited below.

The British havc investigated a great number of ac-
tual cascs of flutter besides model testing since 1925,
and have shown great skill in their choice of assumptions
which afforded agreement between calculation and observa-
tion (references 7 to 13). Model experiments were fre-
quently used as basis for computing the still unknown
damping forces, the linear differential equations forming
the starting point, while Routh's discrininant was exy
pressed as determinant, whereby some fields of the deter-
minant remained empty.
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The method of calculation given in reference 17 was
checked at the D.V.L. by wind-tunnel experiments on model
cantilever wings, which were, of course, fairly heavy and
as a result, oscillated at a lower reduced frequency
w=<0,3 (reference 22) ‘The observed critical speed on
f1ve model wings was from 14 to 24 percent higher than the
_theoretical, which may be attributed to the flow being
other than two-dimensional and to the energy absorptlon of
the r‘1f‘1'egardecl tralllng vortlces.

Subsequently two dynamically similar models of the
He 60 type were constructed at 1:5.6 scale with a span of
‘2.4 meters. These model tests were intended to trace the
cause of the accident described elsewhere and to test the
efficacy of certain structural changes with a view to pre-
venting flutter. The problem was solved, although a nun-
ber of unexpected difficulties were encountered in this
first attempt at constructing dynamically similar models,
The highest reduced frequency obtained in the tests was
0.76, a figure which is fairly close to the probable w =
0.93 at the time of the accident. Since comnplete dynanic
similarity 1s nét attainable and the model usually has more
damping than the full- scale wing, the expected w value
for the nodel w1ll 1n any case be less than for the fullw
size wing.

4, Statistical Investigation

Admittedly, the methods of investigation described so
far suffice to explain observed cases of flutter and to
prove the underlying causes of such flutter, wherein the
actually observed critical speed always constituted a
check on the correctness of the assumptions. But these
methods did not lend themselves to computing the critical
speed on a new type of airplane within a fair degree of
accuracy, particularly when applied to braced wings. Any
further analytical treatment of flutter was precluded,
since it was impossible to compute the purely elastic¢ os-
cillations of a wing on the stand with z reasonable amomnnt
of paper work, unless the construction was fairly simple,
such as monospar, cantilever wings., 4s a result it was at-
tempted to establish a simple dimension rule, suitable for
practical use by the designer, to prevent wing flutter due
to torsion within the normal spced range. '

Since the wing mass and its backward ce.g. position
arc little amenable to influence, aside from the fact that
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tho material damping should also be considered as prodeter-
rnined, the only valid means for raising the critical speed
is the torsional stiffness. The German design specifica-.
tions carried a provision for torsional stiffness as far
back as 1918 for army airplanes. The angle of twist in
the terminal dive was not to exceed 50; this was reduced
to 3.5° in the 1926 design specifications. However, this
was primarily with a view to static torsional stability of
the wing rather than to wing flutter. With the increasing
use of airfoils with fixed c.p., this requirement became
useless,

The 1930 specifications contained a rule of thumb for
torsional stiffness, based on a few theoretical examples
and sinilarity considerations (reference 17) . *

4 ,
D(y) = Ma 52 kpp vi¥ Fry)® (ker®) (2)

In this formula, kX was at first put at %k = 0.12 to
0.24, but subsequent calculations brought about a change
to k = 0.5 (1934 design specifications). With this as-
sunption it is already very probable that the true critical
spced lies above that given in fornula (2)., It was there-
fore permissible to introduce the terminal dlving speed
v. 1in formula (2).

It is worthy of note that this formula, orilginally
merely intended for the degrees of freedom - wing torsion
and bending - proved practical also for a number of air-
foil~aileron combinations, because the observed maximum
values of the reduced frequency for this type of oscilla-
tion are of the same order of magnitude as the frequencies
stipulated for wing bending and torsion,

Roxbee Cox checked formula (2) against ten actual
flutter cases {references 20 and 21). He applied torque
Mg at the wing tip A-A, measured the angle of twist o,
and computed therefrom the constant

M
k! = d Yo (3)

*Por symbols, see section IV, 1.
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TABLE I. Torsional Stiffness and Flutter

t v i
Type () m k I X
me n km/h._ ________
Gloster "Gamecock" 6.68 | 1.60 258 | 0,135 0.405
Gloster"Gamecock" in
pull-out 5,081 1,60 403 .074 224

Gloster "Gorcock", wood 6.58 | 1,60 290 106 .518

‘Gloster ﬂGorcock",'metal 6.58 1 1,60 217 257 771

Short "Satellite! '7.37 1.68| 145! ,033| .066
Gloster "Grebe" 6.54 | 1,60 | 258 | .116| .348
Desoutter Mark II 6.97 | 1.55| 225 .295| ,590
Martinsyde F 4 - 6,08 | 1.68 | 323 | .098| .294
Defavilland "Puss Moth! 8.80 |.1.83 | 314 | .129| .258
Simmond "Spartan' 5.02 | 1.37 | 274 | .o72| .216

m® X 10.7639 = sq.ft. kin/h X .62137 = mi./hr.

The characterization of the torsional stiffness solely
througa angle of twist at the tips is a rather summary pro-
cedure. Conseguently, the k! values scatter consideradly.
If the increase in angle of twist at the tip of a monoplane
wing is twice as great as the mean value over the whole
wing and three times as great for a biplane wing, then the
k wvalues given in the last columan of table I are compara-
ble to the mean value k = 0.35 (formula (3)). Only two
values lie above the maximum value of 0.5 stipulated in
the 1934 design specifications. It seems reasonable to
assume that these two cases a2t least involve flutter with
wing flexure and ailleron motion, Unfortunately the Brit-~
ish report fails to give the modes of oscillation and the
flutter frequencies. Index values for the bending stiff-
nesses were established in a similar manner. However, it
serves no useful purpose to analyze these makeshift dimen—
sion rules, because section IV contains a method which af-
fords a better estimate of the critical speed.
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The stiffaess formulas are makeshift substitutes for
the calculation of the purely elastic oscillation frequen-
cies of a cellule - a calculation which is often quite
difficult. Thig difficulty may be overcome by subjecting
the finished airrlane to a static oscillation test. To
this end the airplane is elastically mounted, an unbalanced
rotor is attached below the fuselage and driven at varyilng
speeds by an electric motor, the node of osclillation and
the frequency being recorded in resonance conditions.

Even when the data of such oscillation tests are
available, it is still extremely difficult and tedious to
analyze the critical flutter spced for the three degrees
of freedom - bending, torsion, and aileron motion - because
the calculation still contains important simplifying as-
sumptions, especially that of two-dimensional flow, as a
result of which the possibility of error should not be un-
derestimated. It is true, however, that this error is
usually on the safe side, as shown by the comparison te-
tween calculations and model tests mentiorned above, be-
cause any damping, neglected in the calculation, will
raise the critical speed. In suvech a calculation, made
with the utmost care, for the draced He 9a monorlane a re-
duced frequency of ® = 1,13 was established, the possible
error being estimated at =20 percent. The chief drawback
of the operation lies in the physically correct terms for
the complex determinant rather than in the evaluation of
the determinant. )

Presumably no substantially greater mathematical accu-
racy can beo obtained even after the calculation has been
improved and refined, because flutter does not always start
at the sane specd cven in the wind-tunnel test. The turbu-
lence of the alir streasm, the angle of attack of the wing,
and accidental small differences in the hinge friction -
all have gsome influenceé., Past experience has vdecn that
flutter often starts in gusty weather, from which it may
te concluded that gust shoclks have overcome the initially
excessive friction forces. '

Once flutter has started - in this or some other man-
ner - it frequently continues until the pilot has reduced
the speed to two thirds or less of its original value,
Possible causes. for this are: rupture of the alleron con-
trol cables, the consistently smaller proportion of hinge
friction to the total damping as the amplitude increases,
and lastly, the effect of change in angle of attack.
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- Another fact should be mentioned in this connection,
At very low amplitudes the laws of potential flow do not
hold because then the viscosity of the air is no longer
negligible. Consequently, the air forces are smaller for
very small amplitudes than they should be according to
the potential theory, and therefore do not induce flutter.
This effect was observed by Birnbaum (reference 15, p.
292). It apparently is a boundary-layer effect, The wing
flops around, so to speak, in its boundazy layer, without
encountering any resistance. '

In flight free from oscillations and at uniform speed

through still air, a wing could exceed its critical speed
by any amount without starting to flutter, It would take
a shock of a certain minimum size, e.g2., a gust shock, to
start flutter which, on the other hand would, of course, then
be extremely violent. HWotable in this connection is the
fact that flutter has often been observed during or diréct-
ly following a pull~out from a steep dive, particularly

in vicious casess  In'a normal, mild pull-out from high
speeds, only small changes of angle of attack are possibdble.
It is improbable that the quotient d ¢,/da, on which the

air forces depend, changes very materially within such a
small range of angle of attack. One¢ may suspect, there-
-fore, that the disturbance of the bounddary layer during
transition from gliding to pull-out or pull-out to level-
off was the urlggcr effect in thesc cases.

Summing'up these facts deduced from'exPerience and
considering in particular the great amount of time re-
quired for the calculation, which is not justified by the
small degrce of accuracy, onc comes to the conclusion that
the analytical method, whilec adequate for explaining the
fundamental relations, is scarcely suitable for the predice-
tion of the critical speed of a new type of airplane.

Once a physical process is no longer amenabdble to ana-
lytical treatment because it containg variables which can~
not be observed and numerically defined, then it must be
explained statlstically, based on a large number of obserw
vations., This statistical method, indicated during the
formulation of the stiffnes's formula (2), can now be ap—
plied in a more comprehensive manner to the problem of
~wing flutter,,because withlin the last few years a number
9f cases of flutter have been investigated in detail, even
" though thls number is as yet not very 1arge from the point
of v1ew of statistical research : :
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The most important parameter introduced in the analyt~
ical treatment is the reduced frequency. An attempt was
therefore made to determine the reduced freguency in the
observed cases of flutter. :

. One may differentiate between "mild" and "vicious®
cases, In mild cases flutter occurs with small amplitudes
which are well below the ultimate strength of the wing.
The flutter usually stops at a speed slightly bvelow that
at which it started, so that the flutter may be stopped
very quickly by pulling the stick back. These mild cases,
while few in number, can be demonstrated with comparative-
1y little danger and are therefore suitable for flutter
investigations in free flight. A test of this kind made
on the He 456¢c, is described elsewvhere in the report. The
recorded air speed, frequency, and mode of oscillation in
flight affords the true value of the reduced fregquency and
the ratio of the amplitudes for each degree of freedom.s

This determination is more difficult in the vicilous
cases, In these cases flutter is, in a way, actually de-
layed by the very causes cited above and does not start
until the theoretical critical speed has been exceeded;
then, however, it begins with such violence as to cause
failure of the wings or ailerons. If the airplane is still
able to land, it is repaired after the flight and subject-
ed to an oscillation test. The dangerous mode of oscilla-
tion is that at which the lowest frequency is accompanied
by torsional oscillations of the wing or ailecron for the
reason that, aside from wing flexure, it requires one of
these two degrees of freedom to give increasing amplitudes.
However, this does mnot imply that flutter must occur at
the frequency observed in the oscillation test, because the
alr forces existing during flutter may modify the mode of
oscillation and the frequency. In particular, a differ-
ence in phase angle is always to be expected between bend-
ing and torsion, because it is only under these conditions
that the energy for increasing the amplitudes can be taken
out of the air streamy, Even so, the oscillation test af-
fords a certain basis, which is the more reliable as the
resonance condition appearing in the oscillation test is
more definitely expressed; i.e., as the damping is small-
er. (See section IV, 4.)

If the airplane is destroyed by the accident, ancther
airplane of the same type will be subjected to the oscilla-
tion test. The flight speed at the time of the accident
can rarely be given very accurately for obvious reasons.
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In serious accidents one may have to rely on statements of
eyewitnegsses on the ground.

The possibility of errors introduced when determining
the reduced frequency is therefore great for the vicious
cases, It is also necessary to decide whether the calcula~
tion of the reduced freguency is to be effected at the
speed at which flutter started or at which it stopped.

But since the start of flutter is decisive for flight op-
eration, the speed at incipient flutter is customarily pre-
ferred, In this manner the observed values discussed in

the next section have been obtained. Disregarding the
possible errors, they range between ©® = 0,58 and ©® = 1,14,
from which it appears that the reduced freguency in new
types of airplanes will not exceed wy = 1,14,

Testing an airplane on the oscillation bench and ob-
serving the dangerous mode of oscillation with the fre-
quency n, the.lowest possible value of the critical speed
can be roughly estimated on the basis of the assumed maxi=
mun value wy of the reduced frequency. If ¢ is the

mean chord of the outer part of the oscillating wing, the
lowest possible value of the critical speed is

’ ont '
v = 0.06 T 73£E km/h (4)

Obviously such a statistical appraisal is worthless unless
the particular type of airplane is not substantially dif-
ferent from all the airplanes which showed flutter in the
indicated range of reduced frequencies by having incorpo-
rated special features which mininize flutter hazard,

When these investigations on flutter were started, the
probablility of finding such a type of airplane was very
small, but in time there will be an ever-increasing number
of types on which such preventative measures may be effect-
ed with at least the partial success of lower reduced fre-
guency. This being so, the rough statistical estimate may
be replaced dy an improved method (section IV) which per-
mits the inclusion of proved preventative measures.

For magss—~balanced ailerons or wings without ailerons,
the lowest possible critical speed is higher, and the re-
duced frequency consequently lower, than the maximum velue
glven above, Practical data are very scarce on this sub-
ject, because in all cases of flutter described hereinaf-
ter, the ailerons contributed to tie growth of oscillations;
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at least, it was impossible to state whether in one case

or the other, flutter would also have occurred if the aile-
rons had Dbeen rigidly connected to the wings. The one case
of flutter without aileron which had been definitely estab-~
lished, prompted the first investigation of flutter without
aileron (section II, 1).

¥aturally, as the speed of airplanes increcase, the re-
gion of flutter without aileron will also bc reached more
frequeatly, and any appraisal of the critical speed based
on the static oscillation must allow for this possible mode
of oscillation also. '

III. RESULTS

1. Analysis of Observed Cases

a) Braced DP 9 (references 4 and 24).~ The strut is
short, so that a long overhong exists. This model devel-
oped two cases of vicious flutter in the spring and autumn
of 1925, starting during pull-up from a steep glide at
about 180 km/h, 1In one case it led to complete fracture
of the wing; in the other, to fracture of the ribs in the
overhang and of the aileron control cables. In gusty
weather it started a slight flutter at 135 km/h.

After the wing was mounted on a rigid test frame, it
showed a flexural oscillation fregquency of 548/min., and a
torsional oscillation frequency of 494/min. . The frequency
of the free oscillation may be rated at 520/min. The wing
chord was 1,5 m; the aileron chord 0,32 m; and the aileron
CeZe wWas 126 mm bekins the nhinge line, The reduced fre-
quency is

w = 0,1885 ===——=t% = (0,82

b) Braced He 8a monoplane.~ This airplane crashed in
the fall of 1928, due to fracture of the wings during an
exhibition flight. From thec reports of eyewitnesses, it
seems quite safe to conclude that flutter was the cause.
The flight speed is estimated at 350 km/h.r An airplane of
the same type was tested on the oscillation stand. The
dangerous mode of oscillation lies probably at 540/min.,
and has a nodal line running from the rear strut fitting
towvard the point where the curved tip joins the straight
leading edge (fig. 3).

m X 39.37 = in., 1nn X .03937 = in. Xun/h X .62137 = mi./hr.
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The wing chord was 3.0 m, the aileron chord 0,3 m,
the aileron c.g¢ was 50 mn behind the hingec line., The re-~
duccd frequeney is

940 X 3.0

%50 = 0.87

w = 0,1885

c) Braced L 78 biplanc.- This model, of which quite a
nurnber had been built, had often been dived at 350 km/h{
when in liay 1930, it developed a case of mild flutter while
flying at a speed of about 210 km/h. It started with an
oscillation of the strut between the lower and upper aile-
rons at great amplitude, then the wings fluttered so se-
verely that the pilot was unable to hold the stick., As
soon as the pilot cut his speed, thc oscillations dicd
out. The dangerous mode lies at 860/min. The lower wing
oscillates in bending, the nodal line being near the strut
fittings,

The aileron connecting strut shows severe lateral de-
flections which cause the upper-wing ailerons to oscillate
in torsion (fig. 4).

The mean chord of the overhang of the lower wing is
1436 m; the aileron chord from hinge line to trailing edge
is 115 mn; the aileron ¢.gs is 23 mn behind the hinge 1line.
The reduced frequency is

860 X 1,36

= 1,05

d) Unbraced He 60 biplane.~ This model is a rather
less conventional design. The lower wing is braced against
the floats while the two struts on each side reach only to
the front spar. ¥No wire bracing 1s used between the wings.
While in other versions of this type the spars had been
"made of wood, this particular type (He 60) utilized steel,
providing the same strength for the same spar height. The
ratio of Young's modulus to ultimate strength for steel
"being substantially lower than for wood, it assured low
natural frequencies of thie wing., In addition, the aileron
system had an unbalance of 75 c¢m kg. Apprehensions were
therefore voiced from the very beginning that flutter might
occur at speeds lower than the prescribed diving speed of
355 km/h, '

In the attenpt to rcaech the prescribed diving speed,
the airplane crashed in December 1931, as a result of a
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torn upper wing. According to the testimony. of eyewit-
nesses, it was a case of dangerous flutter., The speed was
estimated at 350 ku/h.

The dangerous node lics at 780/r:in., The nodal line

" of the upper wing was in the overhang close to and almost
parallel with the leading edge in the inner bay; at approx-
imate wing center it runs parallel to the wing axis (fig.
5)« The wing chord s 2.2 m; the aileron chord 0.4 n.

The reduced frequency is )

- 780 X 2.2 _
w = 0.1885 350 = 0.93

¢) Braced He 46¢c binlane.~ Thc He 46c is a braced bi-
plane with a srmall lower wing developed from a high-wing
nonoplane. After a long period of service, it finally re-
vealed a nild case of flutter at 260 km/h which, however,
disappeared immediately as soon as the speed was reduced.
It was therefore decided to obtain some oscillation photo-
graphs in flight with thig¢ airplane, taking, of course,
proper precautions. The records showed the flexural oscil-
lation of the lower wing, coupled with turning of the un-
balanced aileron system as the cause of the increase; the
aileron Cege was 52 mm behind the hinge line. The aileron
chord of the lower wing is 335 mm, and that of the upper
wing, 500 im.; the wing chord is 1.4 m on the lower, and
240 n on the upper wing.,

Phe oscillation test disclosed between 520 and 755/
nin., a series of antisymmetrical oscillation modes of the
whole cellule about the longitudinal, vertical?mtransverse.
axes, accompanied in part by severe aileron motions (aile-
‘ron control by means of torque tubes). The remarkable fea-
ture is that these modes do not induce flutter. This may be
attributabvle to a slight mass-coupling with the aileron os-
cillation as a result of the small amplitude of the aile~
ron hinge line and the shifting of the location of tlhe
nodal line closer to the trailing edge. Fossibly the damp-
ing of the antisymmetrical oscillations of the whole cel~-
lule is greater. The first symmetrical natural bending
frequencies of the wings lie between £15 and 895/min. The
nodal liae of the lower wing lies at 5O percent or more of
wing chord forward of the leading edge (fig. 6). The reso=-
nance conditions are not pronounced.

But the flutter frequencies recorded with the opti-
graph, lie in this range. Flutter started with a frequeney
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of 830~ 860/min., and dropped to 810/m1n. as speed and am-
plitude increased. The increase of flutter amplitude was
probably favored by the method of mountlng of the aileron
connecting strut, which sloped about 25° toward the plane
of the struts. Thus bending of the upper wing caused mo-
tion of the lower aileromn.

The flight records ranged between altitudes of from
4,000 to 600 m, s0 as to establish the effect of air densi-
ty. TFlutter started at 260 to 275 kv/h. The reduced fre~
guency of the lower w1ng was found at

® = o. 87 (——) | | (_5).

The air-density effect p 1is therefore relatively small,

f) Cantilever biplane XL1lA "Schwalbe".- This type,
built since 1927, had been in service qulte awhile when, in
the spring of 1932, several of them developed flutter be-
low the level top speed which could not be called mild
because it resulted in fracture of the ailerons. 4n air-

- plane of thls type vas thereforé subjected to an oscilla—
tion tcst.

The darngerous mode 1les at 675/m1n It is the symmet-
rical fundamental bending mode of both wings (fig., 7). The
nodal line lies far forward of the leading edge of the wing.
The ailerons are ‘in phase opposition; thelr chord is 240 nm,
their cege is 103 mm behind the ainge line. This results
in a strong mass coupling tetween wing bending and aileron
motion. The mean chord of the extremely oscillating wing
tips is 1«3 m. The experiment’s were temporarily inter-
rupted to perrit the airplanc to take part in an air cir-
cus. During this air c¢ireus in July 1932, it was stunted
at speeds up to 200 km/h without developing flutter; dut as
soon as the pilot started to lard, it suddenly beﬂan to
flutter very severely at 145 1'm/h, which ended 1in the
breaking of the ailerons and dana ge to the plywood covering.
The flutter continued up to 100 Kﬂ/h speed, This case
shows very clecarly the unpredictabdility of flutter,

The reduced frequency at start of flutter is

w =0, 875 X 143 _ .
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while at the end it reaches the high value of Wg = 1.65.

g) Centilever Do 10 monoplane.~ This is an all-metal
high-wing design. The tlhree-spar wing is braced by short
struts.,. The cantilever length is 72 percent of the semi-
span. The leading edge of the wing is approximately a
semiellipse, the trailing edge is straight. During a
. flight on September 9, 1932, it developed such a severe
case of vicious flutter at about 450 km/h, that both wing
tips broke off to the length of one chord., While level-
ing off from a dive at 2,500 m to 1,500 m, the pilot noted
oscillations on the ailerons as far as the wing tips which,
within about 3 seconds, resulted in dbroken wing tips and
ailerons. The pilot was adle to land safely and the air-
plane was subsequently repaired and tested on the oscil-
lating stand.

The wing reveals a series of oscillation modes in the
500 to 1,250/min. freguency zone, whereby the nodal line
gradually shifts from the front toward the rear spar. Al-
though the aileron, with a chord of 355 mm, has its c.g. 41
mra behind the hinge line, these modes do not induce flut-
ter because the aileron conirol is very rigid (push rods),
so that the ajileron motion does not build up to large amn-
plitudes at these frequencies, The dangerous mode lies at
1,400 to 1,500/min. At 1,400/min. the nodal line is exact-
1y coincident with the principal line of fallure of the
wing tips, which slopes 30° outward and backward from the
leading edge in the direction of flight. At 1,500/min.
the outer nodal line, in form of a quarter circle about
the wing tip, is in part coincident with the line of the
sccondary failure. The inner nodal linc runs from the
point of interscction of the trailing edge and planc of
struts at an anglc of 30° outward, and passes directly
?hrough)a region in which the internal bdracing was bdbroken
fig. 8).

Without the lines of failure as clues, it would in-
deed be difficult in this case to ascertain the dangerous
node from the static oscillation test alone. The next
section contuinsg various factors which should help to fa-
cilitate this decision.

Another source of crror lies in the estimate of the
mean chord of that part of the wing which oscillates most
severely, because of its pronounced taper in plan. Ap-
praising the nean chord of the severed wing tir at 1.6 n
and the flutter frequency at 1,450/min., the reduced fre-
guency is



¥.A.C.A, Technical Memorandum No. 782 19

w = 0,1885 L1450 X 1.6 _ 4 g7
450

h) Brgged'LleBYﬁgggplggglr This airplane is the braced
high-wing type. The wing structure is of duralumin; has
two spars, and is covered with fabric. The ailerons are
split. The aileron chord from hinge line to trailing edge
is 300 mm; the aileron c.g. is 35 mnm behind the hinge line.
With thls ce.ge position, vicious flutter started at 290
kn/h, and persisted to 120 km/h. The rivets of the torsion
structure were sheared off from the outboard aileron hinges
of both wings. This explains perhaps the rather extended
range of speeds during which flutter persists, With per-
fect mags balance, a speed of 340 km/h had previously been
obtained without flutter. . o '

The airplane was then tested on the oscillating bench.
Asymnetrical and symmetrical fundamental bending modes oc-
curred at 500/min. and 580/min. The natural fregquency of
the ailerons lies at 7320/min.. The dangerous mode is the
torsional oscillation of the wing at 835/min. The nodal
line runs over the entire span between front and rear spar.
- The aileron amplitudes are high (fig. 9).

, For a 1.56 m wing chord, the reduced frequency at in-
cipient flutter amounts to

® = 0,1885 & = 0.85
as against the abnormally high Weg = 2,05 at its termina~

tion; the failure of the torsion structure itself may per—
haps have lowered the flutter fregueuncy. '

i) AC 12 B cantilever monoplane.- This is a cantilever
high-wing design of wood with tapered wings. While compet-
ing in the 1932 International Challenge Contest, it devel~
oped a mild case of flutter at 220 km/h, bdut only in rough,
gusty weather. 1In fair weather it reached a speed of 270
kn/h without flutter.

The mean chord of the oscillating wing tip is 1.4 m;
the aileron chord is 300 mm; the aileron CeZe is 112 mm
behind the hinge line.

Tested on the oscillaticn bench, this airplane revealed
bending oscillations with very indefinite resonance condi-
tions at 585 to 850/min. frequencies. The dangerous mode
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apparently lies betwecen 800 and 830/min., because then the
aileron rotion caused by mass coupling and elasticity of
the control cables, has a phase difference of about 90
against the bending oscillation; that is, is in resonance
with the bending oseillation (fig. 10). The reduced fre~-
quency is '

= 0,1885 815 X le4 - ¢,98,

i) Do 12 cantilever monoplane "Libelle

high~wing all-metal anphibian. The two-spar wing is ta-
pered in plan form. -

The airplane showed vicious flutter on September 27,
1933, at 180 km/h., The oscillations started when the pi-
lot opened the throttle after leveling off from a glide.
The oscillations were so severe that one aileron Jumped
out of its hinges and both wings were badly damaged, The
wing flutter was preceded by tail buffeting, initiated ap-
parently when opening the throttle, and which in turn-
started the wing flutter. The pilot made a safe landing,
however, after which the airplane was repaired and tested
on the oscillation bench.

The dangerous oscillation mode of the wing lies at
580/min., which at the same time is the principal resonance
mode of the horizontal tail surfaces. It is an antisym-
metrical bending oscillation; the nodal line startg at the
inner aileron and runs outwvardly at an angle of 15° in the
direction of flight (fig. 11). The aileron oscillates in
‘torsion. The mean chord of the outer oscillating part of
the wing was estimated at 1.3 m; the aileron chord is 400
mm. The aileron is not mass-balanced; lts Cege position
was estimated at 100 mm behind the hinge line. The aile~-
ron control cables are not very rigid. The reduced fre-
quency is

= . QO O -~ .79,
w 0.188%5 = 0

k) M 28 monoplane.- This is a cantilever low-wing de=-
sign, of duralunin with wings tapering in plan only.

After extensive testing, the airplane developed a mild
case of flutter at 220 km/h, which was started by the
(mass-) unbalanced ailerons. It stopped when the speed
was reduced to 180 km/h, The pilot had the impression
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that the fluttcr started each time after a bump, even when
very slight. The engine r.pems was 1,750 at the beginning.
Later the airplane was dived to 250 km/h at 1,950 TeDoeM,
without developing flutter. :

The airplane was then subjected to an oscillatipn
test. The wings have a symmetrical fundamental flexural
oscillation at 480/min. and antisymmetrical bending oscil-
lations at 850 and 770/min. The resonance points are very
clearly expressed. The dangerous mode seems to lie at
770/min., because this is the frequency at which out-of~-
phase oscillation of the ailerons is first noticed, which
liltens it puch to the dangerous mode of the Do 12, The
nodal line runs outward from a point near the inboard end
of the aileron at an angle of 10° in the direction of flight
(fig. 12).

The mean chord of the outer oscillatimg part of the
wing is taken at 1.05 m, the aileron chord at 350 mm; the
ceZe 1s 140 mm behind the hinge line. : The reduced fre-
quency is

W =:0.1885 20 X 105 _ o 59,

It i1s planned to make flutter measurements in flight on
this airplane in order to determine the flutter frequen-
cies exactly. '

1) Biplane § 24 "Tiebitz".- This is a biplane of wood
coinstruction, braced in one plane. In the spring of 1932,
the airplane went into a long, unexpected dive with a burn~-
ing cngine and started to flutter, finally breaking the
cellule. The calculated terminal velocity is 280 km/h.

Another airplane of the same type was subjected to an
oscillation test. At 490 and 515/min. the whole cellule
started to ogcillate; at 825 and 1000/min., the overhang
went into flexural oscillations. The dangerous mode lies
at 1215, because this was the fregquency at which the aile-
rons first revealed phase opposition, The nodal line runs
from the intersection of the strut plane and trailing edge
to the first third of the edge strip (fig. 13).

The mean wing chord is 1.18 m, the aileron chord 240
mr, the ceoge 0f the aileron system is 21 nm behind the
hinge line. The reduced frequency is

: 1215 X 1,18 '
w = - == . .
0.1885 1215 X. 0.97
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n) Biplane Ar_ 66 C.~ This is a braced biplane with a
smaller lower wing. In a dive at 340 km/h,ithe airplane
’vtarted to flutter, which. led to the beginnin of a frac-
ture of the lower front spar as well as of the plywood
covering on the lower side of the wing., Since the stick
did not oscillate, the mode was symmetrical. The chord of
the lower wing is 1.65 m; the cegs of the aileron lles 45
mm behind the hinge line.

. The airplane was subjected to an oscillation test by
t h e manufacturer, The bending oscillation of the lower
wing at 7“O/min was considered as the dangerous-mode. At
this mode, the inboard part of the wing pivots roughly
about the front spar, while the overhang bends.

The reduced freguency is

790 X 14865
W = = 7
O 1885 3 0.72

After finishing this %eport, flutter was again observed
after the ailerons had been completely mass-balanced and
were perfectly quiet in the oscillation test. Following
some ninor changes in the shape of the aileron, it devel-
oped vicious flutter at 420 km/h, leading to complete do-
struction of the cellule. This gives

w = 00,1885 Z.g—g_)ﬁ.*l.l.éé = 0,58

This might have been a case of flutter in combined bending
and torsion, although not without some probable aerodynamic
coupling effect of the aileron motion. -
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TABLE II. Observed Cases
o tm tn 8p Do _'nq An Vk o
Ko, Type _1_ 10 1 kn w
m m m min | min | min D
—Iu*—DP 9 1.5 O:gé 0.126- 520 —#— - 180 0.82
2 He 8 30 .42 .055| 540 290 - 300 ;87
3 L 78 1.36! .,20| .023| 860 - 30 210 1.05
4 He 60 242 .41 150, 780 910 40 350 .93
5 He 46 c| 1.4 271 .0B21 845 550 40 268 «87
6 KL 1 A 1,3 24| L103| 675 675 45 145 1.14
7 Do 10 1.6 30| .041;1450 - 60 450 .07
8 L 102 l.56] .30| .035| 835 730 25 290 .85
9 AC 12 E| 1.4 «30| «1lle| 815 700 | 120 220 .98
10 Do 12 1,3 +40| ,100| 580 460 50 180 79
11 M 28 1.05) .35 .140| 770 | 1410 60 220 « 69
12 S 24 1.18| .24 ,02111215 - 70 280 '.97
13 Ar 66 C| 1,65 -~ 051} 790 - - 340 W72
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TABLE Ila. Observed Cases

Yode of Rigidity Wing
No. Type s 0scil- of Aspect struc-
lation controls ture
1 DF 9 symmet~ small viecious wood
rical
2 He 8 f ) 1t n
3 L 78 antisym-— great mifld n
metrical )
4 He 60 - - . viclous metal
5 He 46 ¢ symmet- small mild wood
rical
8 XL 1 A i i vicious S
7 Do 10 antisym- great " metal
metrical
8 L 102 - small " "
9 AC 12 E symmet- " mild wood
rical
10 Do 12 antisym— f vicious metal
metrical
11 i 28 " great mild "
12 S 24 - small vicious wood
13 Ar 66 ¢  symmet-
ri c 8.1 It i i

2. Conclusions
The numerical data of these 13 test cases are append-
ed in tables II and IIa, The mean value for incipient
flutter is, according to table II:

wm-_- 0090 :EOQ}-ZO
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The majority of cases are vicious; only 30 percent
are mild (table IIa): The structural material does nét
seenn to have any effect,

When the stiffness of the ailerons and their controls
is great, flutter occurs in an antisyrmetrical mode be-
cause only then can the ailerons oscillate freely and
transmit energy. T : o :

' If the stiffness of the aileron control is small,
flutter may also occur in a symmetrical mode, but then on-
1y at a frequency high enough above the natural aileron
fréquency to permit motion in phase opposition. Oscilla~
tions of the whole cellule of a biplane about the vertical
and the transverse axis may no* necessarily lead to flutter,
even when combined with -additive wing torsion. The danger—
ous mode, however, is frequently the first natural mode
of the wing independent of the cellule,.

The reason for this behavior lies in the damping of
the oscillations through the precéssional moment of the
rotating propeller. Heretofore, all airplane oscillation
tests have been, almost without exception, static tests,
lees, with the engine standing still, Under these condi-
tions, a number of cellule oscillation modes may develop,
during which the fuselage oscillates slightly in torsion.
In flight with full r.p.m., the precessional moment of the
propeller damps such oscillations very effectively, so
that flutter is very rare. The KL 1 A revealed such cel-
lule oscillations on the stand at the dangerous freguency.
The sudden entry of flutter when starting to land, was
Probably attributable to the diminished danping of the pro-—
reller as a result of the smaller r.P.1my One two—engine
airplane tested on the oscillation bench manifested a ”
marked difference in oscillation modes, depending on wheth-
er the engines were running or mnot. On the otlher hand,
purely symmetrical wing oscillations, during wihich the
thrust axis is werely translatory, do not prevent flutter
as proved by the Ar 66 C airplane.

Table II also gives the natural frequencies of the ai-
.leron oscillations n for various airplanes, together with
the width of the reso%ance curve An defining the damping
of the flutter oscillation. This width is measured at 71
percent of the maximum amplitude. S
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Iv. DETERMINATION OF LIMITING CONDITIONS FOR FLUTTER

: Section II showg that further analytical treatment of
concrete cases of flutter is impractical.because of the
many secondary circumstances which are not anenable to nu-
merical treatment. ©Even so, it is useful from the point
of view of flutter prevention, to establish analytically
the limiting conditions under which flutter is possibdle,
.Flutter is obviously possible only when the oscillat-
ing wing is able to take energy out of the air stream in
order to egualize the ~ever-present damping losses. TFor a
~ general survey, the calculation nay ‘be restricted to the
 1imiting conditions of energy absorption in two-dimensional
flow. ' :

The reduction of 1ift due to tip vortices of the os-
cillating wing tip, will have the effect of increasing
the damping and narrowing the range in which flutter 1s
possible. This additional damping effect can be estimated,
although it is neglected in the following derivation.

Y

‘1. Notation

Avli."vrm | stroket(bending).amplitﬁée,of(aerodynaﬁic)
neutral axis (quarter-chord,point).
‘ﬁ . o ' tprsioﬁai:amplitude 6f ﬁiﬁg;' -
. C : ;‘;, idéflécfion,amplitude of éiiéron.'
v m jeffeétive span of oscillating wing tip.
bq_‘ m ailérbh,spaﬁ. 2
dy  iamping factor of wing.
dp damping factor éf aileron.

D,y ke m® torsional stiffness of wing at abscissa V.
(v) T | ) '

éF : m distance from nodal line of wing to center
line of wing. - - R ' '

E m kg energy of oscillating airplane.

Ep n kg energy of wing.
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m kg

m kg/s

ju} kg/s

kg s® /m
kg s7/m
kg s /m
l/min..
1/min.

1/miﬁ.

energy of aileron.

wing area.

damping phase angle of wing oscillation,
danmping phase angle of aileron oscillation.
stiffness constant. . »
radius of gyration of wing section, referred

to nodal 1line.

radius of gyration of aileron, referred to
aileron nodal line. ’

semichord of wing.

energy coefficients,

mean aerodynamic Energy.

mean damping pbWer.

torsional moment.

mass. .

mass of osclllating wing tip.
aileron mass,

oscillatién frequency.

oscillation frequency at resonance,

width of resomnance curve in oscillation
test.

absolute oscillation amplitude.

position of wing c.g. behind neutral point
(quarter-chord point).

position of aileron c¢.g. behind hinge line.
wing chord.

alleron chord.
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v m/s; km/h  flight speed.

y m coordinate along span.

& _ index of amplitude ratio for wing.

3z index of amplitude ratio for aileron.

b= %%; kg/m® specific weight of wing.

v 1/s frequency of wing oscillation in radians.

o kg s?/m* air density.

o air densgity at sea level,

aileron chord ratio.

-
it

o o
|

P 1) angle of twist.
2) phase angle between bending and torsional
oscillation,

v phase angle between bending and torsional
oscillation of aileron,

X phase angle between torsional oscillation of
wing and torsiomnal osc{llation of aileron.

T o S functions of aileron chord ratio.
w reduced freguency.
Wy, ' maximum value of reduced frequency.

2+ Aerodynamic Energy of Oscillation

With A ! denoting the stroke (bending) amplitude,
B and ¢, the amplitudes of angular motion of wing and aille-
ron; and index ' signifying the real part, index " the im-
aginary part of these amplitudes; a bar - their absolute
magnitude, the time average of the aerodynamic energy of -
oscillation is, according to (16) and (17):

—— s . ——

*The theoretical developnent of the ensuing formulas is to
be published in a separate report.
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—

L, = % Tp vov? 13 b [E® i+ 3% 1z +TC° ls
+ (A'B' + A"B") lg + (A'B" - A"B') 1s
+ (AYC! + AVMCM) 1, + (AtC" -~ AVC') 1,
+ (B'C! + B'C") 1, + (B'C" - B'C') 19 (6)

where the energy coefficients:

-L]_ = 1 4+ T' h
1z = 1
1 L ¢ 0

-LS = l._z__T_L mi
. (7)
b Dy 0
le = 2 [0, I+ 2278 (1 + 1) + 0]
m &, + O
b, = 2o, LETL 227 72 pu

i ’ "
e = L [0, + 05+ O (Tar+ 1+ T'>]

_ 1o %g 1+ ThY
1’9 = m [@5 + 3 (.T" - ) /J ]

The functions T'(y), T"(p) Dbased on Hankel's cylin-
der functions, are given in tadble III. The functions
@n(T) derived from trigonometrical functions, are given

in table IV, From these the energy coefficients 1, have
been computed for aileron chord ratios of 7 = 0.15, 0.20,

0.25 with a 20-inch slide rule (table V). The energy is
negative when taken out of the air stream.
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TABLE III. Functions T'(y), T"(y)

w |0 0.2 0.4 0.6 0.8 T 1.0
T |1 0.455 0.250 0.158 | 0.108 0.079
™ | © - 377 -.330 -.276 -.233 -.201
e 1.2 1.2 1.6 1.8 2.0 o
Y 0.060 | 0.047 | 0.088 | 0.031 | 0.026 | g

T -.175 -.1586 -.140 -.126 ~.115 0

TABLE IV, Function @n(7>

T 0.10 0.15 0.20 0.25 0.20
15: 1.244 1.510 1,727 1.513 2,076
3, . 334 + 610 935 1.299 1.698
¢, .164 .296 . 447 614 793
Q4 .0264 L0719 .1459 .2518 .3924
By 1.080 1.214 1.280 1.299 1.283
o) .615 1.077 1,577 2.094 2.612
o .0506 .1347 W2672 <4507 . 6860
Dq .0079 .0192 .0400 L0707 .1129
o, L0459 1246 .2519 . 43320 L6718
3, .0546 .1803 .4180 .7978 1,345
0,5 .0056 .0281 0876 .2128 4371
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TABLE V., Energy Coefficients
o] Jo.a 0.6 0.8 1.0 1.2 1.6 |2.0
o 1,{1.250 |1.158 1.108 |1.079 |1.060 |1.038 |1.026
lajl 1 1 1 1 1
le|1.425 [1,698 |1.817 [1.878 |1.914 |1.9851 |1.968
ls|5.455 |2.205 |1.618 |1.279 1,059 .788 <628
" [1.]0.00829]0.00880] 000904 |0.60916 |0.00823| 0.00951] 0.00935
o |ls|-+1773 |~.0106 | .0652 | .1059 | .1300 | .1561 | .1696
Sli, 1,504 954 .688. | .538 . 442 326 .258
lg| .1926 | ,1934 | .1928 | .1939 | ,1941 | .1942 | ,1943
lo| .3757 | .3796.| .3815 | .3825 | .3832 | .3840 | .3845
) 1, 0.0195 |0.0207 |0.0212 |0.0215 |0.0217 |0.0219 |0.0219
lg|=-+1175 | .0695 | .1542 | ,1993 | .2265 | .2553 | .2697
§ l,]1.769 1,104 798 .524 513 379 300
le| 2940 | .2956 | .2964 | ,2967 | .2970 | ,2973 | ,2975
lo| .3854 | .8984 | .3970 | .3993 | .4006 | .4024 | .4034
N s 0.0377 |0.0400 |0.0410 0.0416 |0.0419 |0.0422 |0.0424
o |Ve|=+0343 | ,1682 | ,2596 | ,3078 | ,3374 | .3686 | .3841
X 1,11.975 |1.235 .895 701 .576 426 .335
lg| «407 . 410 .412 <412 AR . 413 AR
lo| 3746 | .3886 | .3952 | .2991 | .40156 | .4045 | ,406
—— L —
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3. Damping

As the damping energy was not measured directly in
the oscillation tests, the energy absorbed by material"
damping and external friction must be estimated from the
phase differende betweén elastic:force’and defdrmations

The previous assumption of a constant phase differ-
ence gives an elliptic hysteresis loop independent of fre- .
quency, which dgrees closely with observed facts, The’ '
product of this phase difference and T equals the usual
logarithmic decrement.,’ ' A detailed exposition of these 're-
lations will be found in B, v. Schlippe's article (refer-
ence 25). Do e . RN - . - .

" The dampfng’energy {s obtsined from the relation

energy of-dampiﬁg'fof a complete cycle.
mean energy of oscillating systenm '

2m g =

The phase angles g and h of the wing and of the aileron
oscillations may be determined from the width of the reso-
nance curves of the oscillation test. If the width of the
resonaice curve An 1is neasured at 71 percent of the reso-
nance amplitude (fig. 14), the phase angle is :

g = Hn . (8)
g

At higler amplitudes tHe phase ‘angle increases, the in-
crease being, as a rule, greater for wooden wings than
for metal wings. S ] '

A exception to this is the damping due to friction
in the aileron hinge bearings. With constant frictiomal
moment the damping is proportional to the (angular) ampli-
tude ¢, while the energy of the oscillating aileron rises
proportionally to €2, ' '

By the same argumént, the phase angle h of the ai-
leron is inversely proportional to the amplitude. Thus,
at very low amplitudes, the phase angle of the damping can
be s0 great as to make flutter impossible. Flutter cannot
set in unlcss some outside cause imparts a momentum of a
certain minimunm rise to the aileron. At high anplitudes
only the residual danping due to material damplng of the
control cables remains. With careful installation of the
ailerons and cables this effect is less pronounced.
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Exactly corresponding averages must be formed for the anm-
plitudes B and C. The nean damping energy is '

- . Py - 1 2 ‘
Ly, = V(e EF+h,ER) =z me v

v 1% b w(dg B%+da, ¢%)  (12)

R

For the sake of brevity, the fdllowing nondimensional damp=-
ing factors have been introduced into equation (12):

N APl
FTE 7 op V¥ » 8 1%
L b (18)
o np k ol b
dp = h ~R R4 + 12 -9
mp 1l b 4 m bJJ

Table VI gives damping factors for several airplanes,
The factor dF' appllies to pure bending oscillation. The

torsional ogcillation about the neutraizpoint 1s estimated
at 0.4 dF‘ because the nass distribution along the chord

is not very unlike in the various types. The aerodynamic-
ally effective wing span b mney be estinated from the
dangerous oscillation mode. Only a portion of the outer
oscillatirg part of the wing between wing tip and nodal
line or plane of struts can be considercd as aerodynanically
cffective, bocause the trailing vortices lower the efficien-
cy of the wing tips as compared with two~dimensional flow,

It should be emphasized that this estimate of the
damping is quite rough and therefore merely affords the ap—-
proximate magnitude of the damping energsy. For this rea-
son, the direct determination of the energy of damping
from oscillation tests ig very much desired.

4. Ratio of Amplitudes

In order to be atle to compare the anplitude ratios
of the forced oscillations with those of the oscillation
test, the elastic oscillation of a flat plate covered with
a mass was investigated., The plate is assumed to. be piv-
oted about the axis P and elastically restrained against
torsion, so that it oscillates with a natural torsional

frequency mn/ (fig. 15).
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The phase angles of wing bending anéd wing torsion
danping may be considered as being about equal. Table VI
gives the values of phase angle g obtained from oscilla~-
tion tests with constant excitation and with impulse ex-
citation (deflection tests)s. They are multiples of the
values measured on smooth test bars, because in built-up
rnenbers develop additional losses at the Jjoints. On the
average g = 0.06l. The phase angle of the aileron damp-
ing is according to (6) h = 0.20, and according to a res-
onance curve, h = 0,08, ’

The mean energy content of the oscillating airplane
at the dangerous mode may be determined by forming the in-
tegral

E= Y/ p? an (9)

over the whole airplane, whereby p denotes the absolute
amplitude of the mass element dm measured in the oscil-
lation teste This calculation is so tedious, however,
that in most cases an estimate is preferable,

Visualizing the outer end of the wing as a rigid
plate oscillating in torsion at amplitude 3B about its
nodal line while the aileron oscillates in torsion abdout
the hinge line at amplitude C, ‘the energy content of wing
.and aileron is:

4 : 2
Ep = %? Lm'kz +mp 1° D (%; + 9F2>] B-

, (10)
En = 22 [mp kg° + o 1° b, 2127 ¢
R™ 2 L¥R ™R P qQ 4 7 .
If the wing oscillates in pure bending, then k = e = »,

Bk=3Be = A,

Very often the oscillation amplitude and the wing
chord are very variable near the tip. As the energy trans-
fer involves the square of the amplitude, it is advisadle
in this case to form the mean values:

(K t)2 - ‘__/_‘__.:A_.i__t_:i'_(}_}: ]
m f t dy
BAS ()
b o= LAt 4y
m -
f'Ke ta dy J




35 N.A.C.A, Technical Memorandun Yo. 782

The three following limitiang cases nust be considered:

le mnyg = 0, free pilvoting 2bout the axis P.
% = ¥, phase angle © = T,
2s Ny =mn, forced frequency = natural torsion.

frequency.

% =.49 g, phase angle ¢= %.

2. n, :very high; great térsional stiffress.

~ S ggi 1+ g2, phase angle P ~ g,

Sinilar relations hold for a plate with attached aile-
ron, which is plvoted with elastic restraint about the
hinge axis. With Ar 1 (fig. 16) as the forced amplitude
of the alleron hinge, the anplitude ratio of the forced
oscillation is:

A Ne?
=P NYE
(15)

pal) kRz +p 1* ﬁ —12

1

R

ng 8g L + p ¥ v

The values for the amplitude ratio in the three limit-
ing cases correspond to those given adbove. The cases be-
_tween the first and second limiting cases are of particular

sigznificance for the forced oscillation, because here the
phase angle lies in the second quadrant; that is, it ap-
proaches the optimum phase angle which almost always lies
in the third quadrant. This is borne out by experience,
Flutter usuvally occurs either antisymmetrically - that isg,
with freely oscillating ailerons, so to say -~ or symmet-
rically, at a frequency which lies above the natural oscil~
lation frequency of the ailerons.,

The values of the amplitude ratio obtained from the
oscillation test are, on the whole, smaller than acecording
to liriting case 1, becanse the elasticity of the control

system shifts the oscillation mode toward 1imifing case 2.
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. TABLE VI. Wing and Aileron Damping
~
No. Type g . f%; e T = °R dr
xg/md | (2u+l)g b
1 |oes |o.0% a8 | o0.53 | o0.21 -

2 | He 8 .030 2.4 17 14 -

3| 178 034 649 .50 .15 -

s | e 60 | .051| 3.6 | a2 .19 | 0.0029

5 | He 46 047 7.2 .72 .19 | .0039

s | xn 14 | 067 | 5.8 .84 .19 .0039

7 | Do 10 041 7,2 .63 w19 | .0017

8 | L 102 .042 540 .46 19 --

g | Ac 12 B| .147 5.4 1467 .21 0046
10 | Do 12 | .088 5.1 .96 .31 —
11 | u 28 .078 5.4 .92 .33 .0134
12 | s 24 058 4.0 .52 .20 .0062
13 | Ar 66 C

Assume that axis P

tions at amplitude
ratio of this forced oscillation is:

The comparative factor
dlstrlbutlon and on the air den51ty.

A
B

41

and frequency

m

O 016

Y

b
T D

e

-

executes forced vertical oscilla-
 The. amplitude

(14)

ES depends only on the nass
The second terms

represent the effect of the co-oscillating air masses.
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It shounld be noted that fluite values of 4y aTe

stlll obtainable eveﬂ if the alleron Csge lies in the
_hinge line, becanse the co~ogcilliating air nasses exert a
~.mass-coupling moment.,  This explains the fact that an ai-
leron, whose static ce.ges lies ounly very little behind the
hinge line. .can still excite the oscillations to flutter
(cf section III,1, g,h cle : -

For tHo customary method of estlmatlng the critical
velocities, as well as for the new method using oscilla-
tion tcsts and recommended hereinafter, it is important to
know whether flutter occurs in approximately the same mode
as tae oscillation of equal frequency on the stand.

A very simple war is to visualize the wing tip as a
mass~elastic system., Posing the torsion of the wing tip
about the nodal line at

B = B eV,
whereDy amplitude B is real, the inertia force moment is
6 a’ 0 3 v® otVF

— = W e ,

dt

the elastic nmonent

and the excitational mo me=n
=y oiVF,

In steady oscillation, the sum of these three ronient s
nust always disappear; that is,

~mBU? + 1, Be® 4 u=o0

Separating this equation into real and imaginary parts,
affo*ds

- BB V24 £, B cos g+ i =0
if, Bsin g+ 4 M' =0

Now, the aerodynamic exciattion could occur in such
a manner that the "blind component" MU' = 0. Then the
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oscillation freguency with aerodynanic excitation would not
differ at all from the natural frequency and fron the fre-
quency ' = 0 of the oscillation tests, In actual flutter,
1t usually is M' < O. The phase angle most favorable for
the excitation lies generally in the third gquadrant, as
will be shown bélow, The oscillation frequency is, as. a
result, lower, On the other hand, the freguency increases
with the flying height because the air mags co-oscillating
with the wing,.decreases with deéreasing density.

The estimate will be fairly correct when assuming the
phase angle of the exciting meoenent at ¢ ~ 2250; that isg,
posing :

HY = M=~ f, A sin g ,
®he average for 12 wings is sin g ~ 0,06, The change
of frequency in this case is -3 percent; that is, still
within the resonance width An. Model experiments and
flight measurements in several instabces proved that these
assumptions agree with the facts in approximate magnitude,
particularly for coupled wing and aileron oscillations.

Greater blind components and consegquently greater digs-
crepancies in frequency are to be expected when the damp-
ing is great and the phase angle of excitation is close to
180° or 360°. This is the case, e.Zs, on model wings with-
out ailerons which are not dynamically similar; have high
frictional damping and oscillate with a low reduced fre-
quencys, The limiting case is the "ogcillation" with O
freguency - the aperiodic twistilng off of the wing due
static torsional instability. In this case,

o

H' = - £, B cos g.

Eowever, the wing flutter observed up to date, has
been so far from this limiting case that the assumption of
jdentical modes for actual flutter and for oscillation
test may be considered as. a close approach, provided; of
course, the oscillation test is made with different meth-
ods of excitation since, for example, syrmetrical modes
appear only indistinctly or not at all, with antisymmetri-
cal excitation. TFurthermore, it should not be expected
that oscillation modes due to aerodynamic coupling, are
reproducible on the oscillation bench.
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5, Criterion for Flutter

Wing flutter with constant amplitude occurs when the
energy of damping eguals the input of aerodynamic energy;
that is, when .

Ly * Lagp = O - (18)
If, for simplification, we set A' = A, A" = 0, we obtain
from equations (6), (12), (16) the condition under which

oscillations with constant amplitude occur;

£l + w dpt') + B%(1, + @ 0.4 dp') + TPy + © dg)
+ L B' 1y + A B" g4+ A C' 1g+ A C" 1,
+ (B' ¢! 4+ B" Cc") 14 + (B' ¢" = B" ¢') 14 =0 (17)
As the oscillation test is primarily a means for re-
cording the oscillation amplitudes, it is advisable to
consider the amplitudes B and C as independent variables

and to set

cos ¢ ! = C cos V

td|

B! =

Qf

B" = B gin o ¢" = 0 sin V

The phase angles ¢ and V¥ should be so determined
that the energy assumes an extreme value., Partial differ-
entiation of (10) according to ¢ and ¥ gives:

A{~1, sin @, + lg cos Qo)+ c 1

{lg sin( =9 )= 1g cos{¥ ~9,)] =0
_ _ > (18)
A(- Vg sin Yy+ls cos V) - B

[l sin(Wo=9,)=- 1g cos(¥y=0,)] =0

-

From (17) and (18) the limiting values of the ampli-
tudes B and C may be computed as functions of the reduced
frequency. Admittedly, the calculation is quite complicat-
ed for three degrees of freedom.

Restricted to two degrees of freedom, the results are
more simple and elucidating. This limitation is particu-
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larly permissible when the aileron is the maln cause of
flutter and the rest of the wing simply oscillates with 1it.
Then the ensuing mode of wing oscillation may be said to
have only one degree of freedom. The wing then oscillates
about some fixed nodal line as in the oscillation test.
This has also been observed in model tests. The four fol=-
lowing modes of oscillation with two degrees of freedom,
are investigated.

1. C =0, wing bending‘+ wiﬁg torsion.,

2, B =0, wing bending + aileron motion.

3, A =0, wing torsion about quartér—chord point
+ aileron metion.

4, A = - B', B" =0, wing torsion about three-

gquarter chord point + aile-
ron motiomn.

Writing the extreme conditions (18) in (17) results
in:

—2 —=2 —_— S
1o B (L, +wdp')+8 (L, +00.4 dp")-EBV/ 15 415 = 0

3 n -— — __.-l.’.‘.k__. ——m — _._._1_’-5._._.__
sin Pp = /I*EII—EJ cos P, = fii;:fir
NV 8 VT 5

2. A (Il + wdp!)+C (13+de) A J1E 41,7 =0
l 1
sin Y, = *"TE:;::, cos Vg, = = —jmmlemm==
v lg +17 /162+172

3' §2(12+w004 dFl)"*‘_C—E(-LB"'Q) d.R)”gEA/leg_*"ng = O

> (19)
lg g
sin X = = ——m—m—iee——, COS X T e el e
© J 1% 1 © lg“+1lg?

4, gz (L +1 "-l, +wl.4% dF') + 62 (13+wdR)

- 36./¢ 107 4 (1 = 1)

Tg = 1g

0

il

sin Xo = - /

cos K= - —F =
Y AT P ]
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Excepting lg:. the energy coefficients are consist—"
ently positive{Atherefore, the optimum phase angles usu-
ally lie in the third gquadrant. For mode 2, the optimum
Phase angle passes from the second into the third quad-
rant at ® ~ 0.,5; for the fourth mode, it passes from the
fourth into the third quadrant at o = 1.5.

6. Energy Graphs

In order to circumscribe the influence of démping on
flutter, the calculation is based on the following extreme
values:

dp = 0 "~ 0.25 1.25
dg = 0 : .0025 .025

The'vaiues d = 0 are only of theoretical interest.
The corresponding curves show the range within which
energy may be taken from the air stream.

The four oscillation modes finally afford energy
graphs, with four curves each, for the different damping
values. The abscissa is the logarithm of the amplitude
ratio; the ordinate is the reciprocal value of the reduced
frequency . : - ’

In the following, the energy graphs (figs. 17-23) afe
compared with experience.

a) _Oscillation; wing bending and wing torsion.- Fig—-
ure 17 shows that the best condition for flutter exists at
the amplitude ratio  A/B = 0.9. This corresponds approxi-
mately to a pure elastic oscillation about the three-guar-
ter chord point. The reduced frequency Wy = 0.85 is not
exceeded even with very low damping dy' = 0.25, and may
therefore be considered as the practical limit, With
greater damping, as it occurs particularly on models, the
upper 1limit drops to w = 0,52, so that in especially un-
favorable cases, flutter in bending and torsion is likely
to ocecur. In the region o = 0.52 to 0.85, this type of
flutter has been analytically investigated on the Junkers
A 20 (reference 17), The tazered wing has a chord of 2.36
m at the root and a mean chord of 1.70 m at the severely
oscillating tip. Referred to the wing chord of 1,70 m,
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the calculation gave in second approach, the reduced fre-
quency ® = 0.45, The torsional stiffness of the thick
cantilever Junkers wing is .so great that the critical
speed would still lie above tie operating range even if
the reduced frequency were twice as high.

b} Oscillation mode: Wing bending and alleron motion.-
This mode is especially predominant in the He 46, KL 14,
AC 12E, Do 12, M 28.

Figures 18 and 19 are calculated for aileron chords
of T = 0.15 and 0,25, and show first that the flutter
zone becomes smaller as the aileron chord becomes greater.
According to (15) the backward c.g. position of the aile~-
ron affects the amplitude ratio. The reduced frequency
is so much higher as the amplitude ratio is smaller and
the aileron c.g. moves backward, although increases only
to ® ~ 2 with very small damping and ® ~ 1 with very
great damping. Practically only the right-hand parts of
the curves come in gquestion, because the amplitude ratic
of the flutter oscillation cannot drop below a certain
value determined by the mass distribution of an unbalanced
aileron., The value A/G = 0.2 to 0,3 may be regarded as
the practical limit,

If the amplitude ratio is low the aileron damping ex-
erts a profound influence on the reduced freguency. At
A/C = D425, cage, W increases from 1.13 to l.4 when the
aileron damping drops from an initially high value of
0.025 to the low value of 0,0025. Flutter therefore con-
tinues until the speed has dropped to 80 percent of its
initial value, '

A comparison of the § values as computed for several
airplanes with the energy graphs, discloses ® values
which are of the same order of magnitude as the observed
ones. As the interpolation for different aileron chords
and dampings by means of figures 18 and 19 is not very ex-
act, a closer agreement can be obtained when establishing
a special energy graph for each airplane, using the damp-
ing values and amplitude ratios obtained in the oscilla-
tion test and taking the ® values from these graphs. The
essential factor is the correct reproduction of the damp-
ing effect and the backward c.g. position of the alleron
on the flutter phenomenon.
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c) Oscillation mode: Wing torsion adbout a quarter-—
chord point and aileron motion.- This mode occurs approx-
imately in models DP 9, He 8, He 60, L 102, § 24, The
fact that B0 percent of these types of airplanes were com-
plotely destroyed, proves that this mode is by far the
most dalgerous. The energy graphs (figs. 20 and 21) show
that extremely high values of the reduced frequency are
obtainable with small damping. If the aileron damping
drops from an initially high value to a small final value
after flutter starts, a large excess of energy is availa-
ble, which inevitably must lead to complete fallure,

One interesting feature is that such flutter is possi-
ble only within a limited range of the amplitude ratio.
The practical upper limit is for the aileron chords:

T

It

0.15 B/C = 0437
T = .25 B/C £ .45

This would stipulate a certain minimum dlstqnce of back-
ward ce.ge position of the aileron.

An aileron with the rather convehtional’pharacteris¥
tics: T = 0415; kg = 0.12 1; sp = 0.06 1; mp = 0.25 ™
2 I
[ bq has, for example, according to (15), the ampli-
tude ratio ,

A
“E - 0.192

2 C

aw

if freely oscillating. According to figure 20, this value
lies exactly at the point of minimum critical velocity for
small wing damping, and gives w = 1l.25, In the neighbor-
hood of amplitide ratio B/¢ = 0.2, reduced freguency
values up to W = 0.9 are possible even with maxinum
damping. With small danping, very high w values are pos-
sible, as actually observed on the L 102 at the end of
flutter,

d) Oscillation node: Wing torsion about three—quarter
chord point + aileron motion.~ In this rode no reduced

freguency values in excess of W ~ 1,0 are possible, even
with small danping (figs. 22 and 23) This mode is there-

fore less dangerous.

The ailleron chosen above as’ exanple, requires twvice
the unbalance (sg = 0.12 1) to give an amplitude ratio
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1 4R _ 5,89
0.2 T

(o Rlo0]

which, in figure 22, neets thé right-hand side of the curve
for small damplng at W = 0,62, With the aileron CeEe
farther forward, thig value could be obtained only when the
anplltude 'C is ‘increased at the sane timeé by resonance

of the control systen.

7. Appl;catlon to a Pfactical Example

These energy graphs are supposed to glve a general
view of the new method of estimating the critical speed.
In actual cases, it usually ‘involves oscillations at which
the nodal lines do not exactly correspond with the third
nor with the fourth type of the illustrated examples. The
aileron chords also vary within a great range. However,
with the aid of the figures given in tables III and IV,
supplemented by the damping energy from the oscillation
test, a particular energy graph can be obtained for each
individual case. -.

Tor example, if the oscillation test shows that the
nodal line in the outer part of the wing lies at three-
quarter chord point, that the (angular) amplitude C of
the aileron motion eguals twice the wing torsion amplitude
B, and that the wing damping factor is dy' = 0.25, then
figure 23 gives for B/C = 0.5

1.06 to 1,10

g g

= 0,94 to 0,91

-depending on the value of the aileron démping 'dR. In this

case the effect of dy on the reduced frequency 1is guite

smalle In fact, the .reduced frequency will be lower than

the values found from the graph, because the assumption of
optimum phase angle is not exactly fulfilled, Evén so, it
is possible to estimate the lowest critical speed’ at the -

observed mode of oscillation, which may prove very valua-

ble under certain circumstances.,

_ Preventative meadasures against flutter, particularly
mass balancing of thé ailerons, show their effect in the
low aileron amplitude ¢ in the oscillation test. The am-
plitude ratio B/C can then increase quite eagily beyond
1, so, that no flutter at all is possible for a nodal .line
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at the quarter-chord point (figs. 20 and 21) or at any
rate that a substantially higher value of 1/w will be
found on the right-hand branch of the curves in figures
18, 19, 22, and 23,

V. PREVENT ION OF FLUTTER

The previously described conditions for oscillatien
modes of amplitude ratio and damping - while admittedly
necessary =~ do not, however, constitute adequate conditions
for flutter. The thus-estimated critical speeds are there-
fore on the safe side., 1In the energy calculation, the prem—

. ises were optimum phase angles which, as is known, are
closely approached in many cases in practice, especially

with aileron oscillations., On the other hand, it is con-
ceivable that cases may occur wherein the phase angle can-
not even approach the optimum value and in which no flut-
ter is at all possible, even if the oscillation modes as
recorded on the oscillation bench, were indicative of flut-
ter.

The very simple form of the energy method compared
with the exact method is simply the result of omitting
the elastic forces as well as the mass forces and their.
distribution from the calculation. 3But these forces are
far from negligible as far as the magnitude of phase angle
is concerned, To illustrate: It can be proved that with
two degrees of freedom - wing bending and wing torsion -
flutter 1s possible only when the product

o s :
> T p 7 20
m s X ' (20)

whereby m 1is the wing mass per unit length of the span
and s the distance of the c.g. of the wing element behind
the guarter-chord point, Applied to a cantilever wing
without aileron, this simply means shifting the c.g. of the
individual wing sections near the quarter-chord points, in
order to prevent flutter at any air density p. Such wings,
although with ailerons, are found on the M 20,

The majority of flutter cases described in section III,
probably could have been prevented by careful mass balance
ing of the ailerons. "This method, originally pointed out
by von Baumhauer. and Xoning (reference 3) in 1923, has fre-
quently been discussed sinee then in the literature. It is
a fact, however, that practically all older models had un~
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balanced ailerons and that flutter was less frequent and le
less dangerous at the then comparatively low flying speeds.

On the other hand, mass-balancing the ailerons after
an airplane is built, means an expense of weight, requir-
ing up to 0.5 percent of the airplane weight aside from
inereased drag, Quite obviously, subseguent modification
of all existing types was therefore out of the gquestion,
particularly as the need for such measures did not seem
very apparent as far as the older types were concerned.

For the new types the DLA at first recommended mass
balancing; later this was incorporated into the airplane-
design specifications. .An aileron originally designed for
mass balance is not much heavier than one designed without
balance. The purpose of mass balancing 1s to reduce the
aileron amplitude to harmless magnitude in all modes that
may cause flutter. For modes such as shown 1n figures 22
and 23, even a "partial mass balance" may be all that 1is

required.

Ia other cases, however, it is necessary to effect a
complete and careful balance because it requires a ten-
times-greater aileron amplitude in order to get out of the
range of the minimum of critical speed, according to the
diagrams. This fact has not always been sufficiently rec-
ognized.

The success of these preventative measures should be
checked on the oscillation bench, because even a complete-
1y balanced aileron may oscillate. DPossible causes are:

1. Mass coupling due to the co~oscillating air mass,
particularly when the gap between wing and aile~
ron is small and the aileron is not aerodynamic-
ally balanced.

2. Xinematic coupling with complicated and indistinct
static structure of the cellule.

2. Lack of torsional stiffness of ailerons,

4, Natural oscillations of the system: left ailleron,
controls, right aileron,

The latter oscillation is particularly dangerous
when coincident with a symmetrical natural mode of the
wings. In the vicinity of the resonance point, the phase
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angle of the aileron rotion relative to the wing motion
changes profoundly with the frequency, so that the phase
angle most favorable for flutter can easily occur. Reme~
dies are: changes in the natural frequency of the aileron
control or artificial damping of the aileron deflection,

Some of the above cases prove, at any rate, that even
ailerons nearly or completely mass-balanced may occasion-
ally develop flutter, in which case, however, the reduced
frequency seems to be below the average, l.see W < 0,9,

If the aileron were to be considered as nonexisting
so far as flutter is concerned, they would have to have
not only zero amplitude on the oscillation bench but also
complete aerodynamic balance - at least, within the range
of small angles of attack and aileron deflection., It can
be proved theoretically that otherwise the circulation may
cause a purely aerodynamic coupling, which lowers the crit-
ical speed relative to that of the wing flutter in bending
and torsion,

If all these conditions for preventing aileron oscilla~-
tion were fulfilled, the displacement of the c.g. axis of
the wing near to the guarter-chord point, would practically
suffice for flutter prevention. Obviously, this 1s predicas-
ed on the assunption that the two-dimensional theory of wing
flutter is substantially correct, whick cannot be summarily
taken for granted with complicated wing shapes. The wing
stiffness of such an airplane could be arbitrarily low,
provided no other lower stiffness 1limits existed.

Such flutter prevention, however, requires a large
number of design changes of such a radical nature that in
many cases 1t would be tantamount to a new departure in
design methods. In view of this fact, 1t seemed more ex—
pedient to increase the wing stiffness as long as consist-
ent with minimum weight. This was the reason why this pre-
ventative measure was resorted to at first, Greater stiff-
ness leads to higher wing frequencies and consequently
higher critical speed. As a result, the flutter, while not
altogether prevented is, however, mnoved up into a speed
range above the highest speed which can be reached. A con-
tributing factor was the consideration that the wing it-
self must have a certain minimun stiffness in order to pre-
vent statlie torsional instablility and reversal of alleron
effect at high flying speecd.
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With further increase of speed, however, a point is
reached where the simple expedient of increased stiffness
is no longer compatible with the weight and where it will
be necessary to combine all known measures for the pre-
vention of flutter.

Translation by the National Advisory
Committee for Aeronauntics.
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